The Surface Integral

An important type of vector integral that is often quite useful for solving physical problems is the surface integral:

$$
\iint_{s} A\left(F_{\xi}\right) \cdot d s
$$

Some important things to note:

* The integrand is a scalar function.
* The integration is over two dimensions.
* The surface S is an arbitrary two-dimensional surface in a three-dimensional space.
* The position vector \bar{r}_{s} denotes only those points that lie on surface S. Therefore, the value of this integral only depends on the value of vector field $A(\bar{r})$ at the points on this surface.

Q: How are differential surface vector $\overline{d s}$ and surface S related?

A: The differential vector $\overline{d s}$ describes a differential surface area at every point on S.

S

As a result, the differential surface vector $\overline{d s}$ is normal (i.e., orthogonal) to surface S at every point on S.

Q: So what does the scalar integrand $\mathbf{A}\left(\bar{r}_{s}\right) \cdot \overline{d s}$ mean? What is it that we are actually integrating?

A: Essentially, the surface integral integrates (i.e., "adds up") the values of a scalar component of vector field $\boldsymbol{A}(\bar{r})$ at each and every point on surface S. This scalar component of vector field $\boldsymbol{A}(\bar{r})$ is the projection of $\boldsymbol{A}\left(\bar{r}_{s}\right)$ onto a direction perpendicular (i.e., normal) to the surface S.

First, I must point out that the notation $\boldsymbol{A}\left(\bar{r}_{s}\right)$ is nonstandard. Typically, the vector field in the surface integral is denoted simply as $\boldsymbol{A}(\bar{r})$. I use the notation $\boldsymbol{A}\left(\bar{r}_{s}\right)$ to emphasize that we are integrating the values of the vector field $\boldsymbol{A}(\bar{r})$ only at points that lie on surface S, and the points that lie on surface S are denoted by position vector \bar{r}_{s}.

In other words, the values of vector field $\boldsymbol{A}(\bar{r})$ at points that do not lie on the surface (which is just about all of them!) have no effect on the integration. The integral only depends on the value of the vector field as we move over surface S-we denote these values as $\boldsymbol{A}\left(\bar{r}_{s}\right)$.

Moreover, the surface integral depends on only one component of $\mathbf{A}\left(\bar{r}_{s}\right)$!

Q: On just what component of $\mathbf{A}\left(\bar{r}_{s}\right)$ does the integral depend?

A: Look at the integrand $\boldsymbol{A}\left(\bar{r}_{s}\right) \cdot \overline{d s}$--we see it involves the dot product! Thus, we find that the scalar integrand is simply the scalar projection of $\boldsymbol{A}\left(\bar{r}_{s}\right)$ onto the differential vector $\overline{d s}$. As a result, the integrand depends only the component of $\mathbf{A}\left(\bar{r}_{s}\right)$ that lies in the direction of $\overline{d s}$--and $\overline{d s}$ always points in the direction orthogonal to surface S !

To help see this, first note that every vector $\boldsymbol{A}\left(\bar{r}_{s}\right)$ can be written in terms of a component tangential to the surface (i.e, $\left.A_{l}\left(\bar{r}_{s}\right) \hat{a}_{\ell}\right)$, and a component that is normal (i.e., orthogonal) to the surface (i.e, $A_{n}\left(\bar{r}_{s}\right) \hat{a}_{n}$):

$$
A\left(\bar{r}_{s}\right)=A_{l}\left(\bar{r}_{s}\right) \hat{a}_{\ell}+A_{n}\left(\overline{r_{s}}\right) \hat{a}_{n}
$$

S

$$
\hat{a}_{\ell} \cdot \hat{a}_{n}=0
$$

We note that the differential surface vector $\overline{d s}$ can be written in terms of its magnitude $(|\overline{d s}|)$ and direction $\left(\hat{a}_{n}\right)$ as:

$$
\overline{d s}=\hat{a}_{n}|\overline{d s}|
$$

For example, for $\overline{d s_{r}}=\hat{a}_{r} r^{2} \sin \theta d \theta d \phi$, we can say $\left|\overline{d s_{r}}\right|=r^{2} \sin \theta d \theta d \phi$ and $\hat{a}_{n}=\hat{a}_{r}$.

As a result we can write:

$$
\begin{aligned}
\iint_{S} \boldsymbol{A}(\bar{r}) \cdot \overline{d s} & =\iint_{S}\left[A(\bar{r}) \hat{a}_{l}+A_{n}(\bar{r}) \hat{a}_{n}\right] \cdot \overline{d s} \\
& =\iint_{S}\left[A(\bar{r}) \hat{a}_{l}+A_{n}(\bar{r}) \hat{a}_{n}\right] \cdot \hat{a}_{n}|\overline{d s}| \\
& =\iint_{S}\left[A(\bar{r}) \hat{a}_{l} \cdot \hat{a}_{n}+A_{n}(\bar{r}) \hat{a}_{n} \cdot \hat{a}_{n}\right]|\overline{d s}| \\
& =\iint_{S} A_{n}(\bar{r})|\overline{d s}|
\end{aligned}
$$

Note if vector field $\mathbf{A}(\bar{r})$ is tangential to the surface at every point, then the resulting surface integral will be zero.

Although S represents any surface, no matter how complex or convoluted, we will study only basic surfaces. In other words, $\overline{d s}$ will correspond to one of the differential surface vectors from Cartesian, cylindrical, or spherical coordinate systems.

